
Surviving Client/Server:
Customized User Administration
by Steve Troxell

For the past few issues we’ve
been developing a centralized

login manager to consistently han-
dle many aspects of a client appli-
cation’s connection to a database.
This allowed us to easily add fea-
tures such as posting login/logout
audit trails, having passwords ex-
pire and allowing users to change
passwords from the client app.
Part of the appeal of this technique
is that we can provide certain user
and password management fea-
tures in our applications even if
those features aren’t built into the
RDBMS we’ve chosen. To achieve
this, we must store some extra
information about the users in our
own database table. Of course,
when we add users through our
RDBM system’s user utility, it’s not
going to update our supplementary
data about the users because it has
no knowledge of this table. This
month, we’re going to develop our
own user administration utility
which adds users both in the
RDBMS and in our supplementary
data table at the same time.

The User Administrator App
The User Administrator program is
shown in the screenshot. This is a
minimal version, designed to let us
view all the users in the system,
add new users and allow us to
change any of the user information
(including their password). As a
reminder from past months’ work,
the supplementary user table
we’ve used for TLoginManager is
shown in Listing 1. Our application
merely changes this table, but
must also add user names and
passwords, and change the pass-
word for a given user in the RDBMS
itself. The complete User Adminis-
trator program can be found on
this month’s disk in the SURVIVE
directory (of course, you’ll have to
adjust its database connection and
code for your particular RDBMS).

Adding Users
Integrating with the RDBMS is
problematic: your RDBMS is going
to have to provide some external
means of adding users and chang-
ing their password. Many times
this is provided via the system’s
API, usually involving a sequence
of calls to a DLL. The details of how
your particular RDBMS provides
this functionality will vary greatly
from vendor to vendor. You’ll have
to check the documentation.
Microsoft SQL Server is the basis
for our work this month and SQL
Server, in addition to the API, pro-
vides SQL commands for adding
users and changing passwords.

Listing 2 shows a stored proce-
dure we’ll use to add a user. In SQL
Server, users must be added at two
levels: a user login is added to the

SQL Server service and the user
must be added specifically to the
database itself. In this way, some
users could be allowed into certain
databases on the server but not
others. We use the sp_addlogin sys-
tem stored procedure to add the
user and their password to SQL
Server and the sp_adduser system
stored procedure to allow that
user to access our database. Then
it is a simple matter to add a new
row to our Users table.

We’ll encapsulate the call to this
stored procedure into a routine we
can call from our Delphi app as
shown in Listing 3. This routine is
kept isolated from the rest of the
app (including dynamically build-
ing its own TQuery component) so
that any changes needed to sup-
port different RDBM systems are

CREATE TABLE Users(
 UserID integer, /* System ID number */
 Username char(30), /* Login user name */
 FirstName char(20), /* User’s proper first name */
 LastName char(20), /* User’s proper last name */
 DateLastLogin datetime, /* Date and time of last login */
 DateLastPasswordChange datetime, /* Date & time of last password change */
 PasswordLifespan smallint) /* Number of days between forced password changes */

➤ Listing 1

50 The Delphi Magazine Issue 19

centralized. If we needed to call a
DLL to add users to our database,
only this routine would need to be
modified, the calling program
wouldn’t care exactly how users
are added to the system.

With this foundation in place,
writing the actual application is
fairly straightforward. The only
special part is the password. Since
we don’t store the user’s password
we never actually display it in the

Password edit control. We only dis-
play an arbitrary number of spaces
(shown as the special password
mask character). It’s typical prac-
tice for a user’s password to be
kept secure even from the user ad-
ministrator. If the user forgets their
password, the administrator sim-
ply assigns them a new one and
usually requires them to change it
immediately upon their next login.

When we add a new user, we
clear the data entry fields at the
bottom of the screen and set the
checkbox and radio controls to the
right according to how our system
defaults these values. It would be
handy to store the default settings
in a table as well, as shown in List-
ing 4 (this begs for a Configuration
dialog in the application to set
these default values).

User Security
Generally, a RDBM system won’t
allow just any user to add more
users to the system. Nor are they
likely to allow just any user to
change another user’s password.
Typically, a program is required to
be logged in through the “database
administrator” account to permit
these actions (we’ll call this the
DBA account). Therefore, the User
Administrator program should
connect to the database using the
DBA account.

You could hardcode the DBA ac-
count’s username into the applica-
tion (through the TDatabase.Params
property for example) and require
users to enter only a password to
gain access to the program. The
password would have to match the
DBA account’s password for the
program to successfully connect to
the database.

An alternative would be to pre-
populate the Users table with a re-
cord corresponding to the DBA
account’s username. This would al-
low you to use TLoginManager to let
users login to User Administrator.
It would be simple to add a prop-
erty to TLoginManager which com-
pares the login user name with the
DBA account to let you know if it
was the DBA account who was log-
ging in. By having a Users record
for the DBA account, you could
even use User Administrator to

create procedure AddUser(
 @Username varchar(30),
 @Password varchar(30),
 @FirstName varchar(20),
 @LastName varchar(20),
 @PasswordLifespan smallint,
 @PasswordMustChange char(1)) /* Y/N */
as
 declare @Result integer
 declare @DateLastPasswordChange datetime
begin
 /* add a server login */
 execute @Result = sp_addlogin @Username, @Password
 if @Result = 0
 begin
 /* add the user to our database */
 execute @Result = sp_adduser @Username
 if @Result <> 0
 begin
 execute sp_droplogin @Username
 return
 end
 if @PasswordLifespan <= 0
 select @PasswordLifespan = null
 if Upper(@PasswordMustChange) = ’Y’
 select @DateLastPasswordChange = null
 else
 select @DateLastPasswordChange = GetDate()
 /* build a record for the supplementary user table */
 insert Users(Username, FirstName, LastName,
 PasswordLifespan, DateLastPasswordChange)
 values (@Username, @FirstName, @LastName,
 @PasswordLifespan, @DateLastPasswordChange)
 /* if an error, then remove the user from the system */
 if @@error <> 0
 begin
 execute sp_dropuser @Username
 execute sp_droplogin @Username
 end
 end
end

➤ Listing 2

function DelimitedStr(S: string): string;
begin
 Result := ’’’’ + S + ’’’’;
end;
function BoolToChar(B: Boolean): Char;
begin
 if B then Result := ’Y’ else Result := ’N’;
end;
procedure AddDBUser(DB: TDatabase; Username, Password, FirstName,
 LastName: string; MustChangePassword: Boolean; PasswordLifespan: Integer);
begin
 with TQuery.Create(nil) do
 try
 DatabaseName := DB.DatabaseName;
 SQL.Add(’execute AddUser ’);
 SQL.Add(DelimitedStr(Username) + ’,’);
 SQL.Add(DelimitedStr(Password) + ’,’);
 SQL.Add(DelimitedStr(FirstName) + ’,’);
 SQL.Add(DelimitedStr(LastName) +’,’);
 SQL.Add(IntToStr(PasswordLifespan) + ’,’);
 SQL.Add(BoolToChar(MustChangePassword));
 ExecSQL;
 finally
 Free;
 end;
end;

➤ Listing 3

create table AdminConfig(
 PasswordLifespan smallint null,
 MustChangeNewPassword char(1) not null default ’N’
 check (MustChangeNewPassword in (’Y’, ’N’)))

➤ Listing 4

March 1997 The Delphi Magazine 51

change the password of the DBA
account if you so desire.

Editing A User
Allowing user information to be ed-
ited is slightly easier. We only have
to integrate with the RDBMS if the
password changes, the rest is sim-
ply a matter of changing our Users
table. Since we don’t actually dis-
play the user’s current password,
it’s easy to detect when it has
changed: whenever there’s non-
blank data in the Password edit box.

Listing 5 shows the stored proce-
dure we’ll use to edit a given user’s
record. If we detect a new pass-
word, we use the built-in sp_pass-
word system stored procedure to
actually change the password. SQL
Server allows the system adminis-
trator account to change the pass-
word of any user and does not
require the old password to do so.
Therefore, we pass null for the old
password. Note we must be careful
to identify the user for which
we’re changing the password.
Otherwise, we might inadvertently
change the password of the DBA
account (or whatever account was
used to login the User Administra-
tor application).

Just as we encapsulated the
AddUser stored procedure in an
AddDBUser Delphi procedure, so
we’ll encapsulate the EditUser
stored procedure. The EditDBUser
Delphi procedure is much the same
as AddDBUser, so I won’t repeat it
here. The important difference is
that it makes sure to trim spaces
from the password before sending
it off to the stored procedure.

For this example, I’ve put the
AddDBUser and EditDBUser Delphi
procedures into a unit called
UserAPI. This unit is now responsi-
ble for whatever server-specific
code is necessary to implement
our interface to the RDBMS. If we
need to make DLL calls rather than
SQL statements, we need only con-
cern ourselves with UserAPI. The
rest of the application is not con-
cerned with exactly how the
RDBMS integration takes place.

Enhancements
With the User Administrator utility
and the TLoginManager class, we can

add a whole slew of new user man-
agement functionality to our appli-
cations, whether our RDBMS
supports it or not. Some features
that we could implement are:
➣ Account Lockouts. A flag set

on a user which prevents any
system logins until the flag is
cleared. This is a high security
measure for when an employee
goes on vacation, leave of ab-
sence, or just extended out of
town business and ensures that
their account cannot be used
until reactivated. This could be
made as elaborate as you wish,
to include scheduling user ac-
cess to specific times of day (for
example, the account can only
be used between 9am and 5pm
Monday through Friday).

➣ Password Histories. The sys-
tem could remember a fixed
number of passwords for a
given user and not allow them
to be reused when the user
changes their password. Like
the password lifespan, the num-
ber of passwords to remember
(and whether this feature is
even in use) could be different
for each user.

➣ Disallow Password Changes.
The user would not be allowed
to change their password. This
feature would aid in the use of
shared login accounts such as

guest accounts (most likely you
would have the password never
expire in this case as well).

Conclusion
The point of this exercise is that
the login management system
we’ve developed over the last sev-
eral months permits you to cus-
tomize the user management
features of your software products
without being bound by the func-
tionality provided by the RDBMS
you’ve chosen. This self-contained
system also greatly facilitates the
development and deployment of
turnkey systems.

Of course, an extension of “roll-
ing your own” user administration
system is providing a means of con-
trolling the access to various mod-
ules and screens in the application.
But we’ll come back to this in a
future issue: we’ve beaten this
topic into the ground enough.

Next month we’ll see how to
write our own custom extensions
to the SQL language.

Steve Troxell is a Senior Software
Engineer with TurboPower
Software. He can be reached by
email at stevet@turbopower.com
or on CompuServe at 74071,2207

create procedure EditUser(
 @Username varchar(30),
 @Password varchar(30),
 @FirstName varchar(20),
 @LastName varchar(20),
 @PasswordLifespan smallint,
 @PasswordMustChange char(1)) /* Y/N */
as
 declare @Result integer
 declare @DateLastPasswordChange datetime
begin
 if @Password <> ’’
 begin
 execute @Result = sp_password null, @Password, @Username
 if @Result <> 0
 begin
 raiserror 50001 “Could not change user password”
 return
 end
 end
 if @PasswordLifespan <= 0
 select @PasswordLifespan = null
 if Upper(@PasswordMustChange) = ’Y’
 select @DateLastPasswordChange = null
 else
 select @DateLastPasswordChange = GetDate()
 /* change the Users record */
 update Users set
 FirstName = @FirstName,
 LastName = @LastName,
 PasswordLifespan = @PasswordLifespan,
 DateLastPasswordChange = @DateLastPasswordChange
 where Username = @Username
end

➤ Listing 5

52 The Delphi Magazine Issue 19

	The User Administrator App
	Adding Users
	User Security
	Editing A User
	Enhancements
	Conclusion

